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Abstract. We derive an integral formula that expresses the section determinants of semi-groups
of linear operators through the solution to a linear integral equation. The solution theory of this
integral equation is developed and for a special case a concrete solvability criterion is presented.

1. Introduction

In quantum mechanics computing transition probabilities in many-fermion systems leads to
section determinants of unitary operators, which are solutions to Schrödinger equations. Here
we study, more generally, section determinants of semi-groups of linear operators, for which
we derive an integral formula. To be more precise, letU(t) be a semi-group of bounded,
linear operators acting on a Hilbert spaceH and letP : H→ H be an orthogonal projection
having finite-dimensional range. We consider the determinant det(PU(T )P ), which is to be
understood as the determinant of the finite-dimensional operatorPU(T )P : ranP → ranP .
In order to derive a formula for det(PU(T )P ) we assume that the generatorA of U(t) has the
formA = A0 +B. In theorem 2.9 we prove the following formula:

det(PU(T )P ) = det(PU0(T )P ) exp

[∫ 1

0

∫ T

0
tr(B G(t, t + 0;α)) dt dα

]
. (1)

HereU0(t) is the semi-group generated byA0. The operatorG(t, t ′;α) solves the integral
equation

G(t, t ′;α) ϕ = G0(t, t
′) ϕ − α

∫ T

0
G0(t, τ ) B G(τ, t

′;α) ϕ dτ ϕ ∈ H (2)

where the operatorG0(t, t
′) can be expressed in terms ofA0 andP . G(t, t ′;α) is called the

time-ordered Green operator, although other names appear (see [1]). In the physics literature
the solution to Schr̈odinger equations with time-dependent potentials is written as a formal
exponential series, the so-called time-ordered exponential function. This may explain the
name time-ordered Green operator.

A forerunner of formula (1) appears in Rivier and Simanek [5], who use a different version
in order to compute the exact asymptotics in Anderson’s orthogonality theorem. They do not
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give a rigorous proof but only indicate a formal derivation based upon manipulating infinite
series within a Fock space formalism.

A special kind of equation (2) was formerly studied by Bartet al [1]. We shall not use their
results here but develop independently a solution theory in section 3 that focuses completely
on the special right-hand sideG0(t, t

′), thus avoiding superfluous calculations. It will turn out
that non-vanishing of the determinant det(PU(T , α)P ) and unique solvability of the integral
equation are equivalent. In spite of being important as a theoretical tool this solvability
criterion is unsuitable for practical purposes because, as we mentioned at the beginning, it
is the determinant that will be the object of study. Thus it is important to have a solvability
criterion that is formulated solely in terms of the generatorA rather than the semi-groupU(t)
itself. For the special case ofA = −iH ,H being a self-adjoint operator, such a criterion will
be presented in section 4. Since in that caseU(t) is a group of unitary operators our results
may find applications in quantum mechanics.

Applications of formula (1) are not restricted to quantum mechanics, i.e. to the Schrödinger
equation. Because we required thatU(t) be only a semi-group rather than a group we can
use (1) to investigate section determinants related to other evolution equations such as, for
instance, the heat equation. Therefore, our formula provides a new tool in the context of the
so-called Szeg̈o theorems.

In a comparably abstract framework section determinants of exponential-like operators
were first investigated by Widom [6] who considered operators eX, with X being trace
class. His main tool was a factorization theorem based upon a general addition formula for
operator-valued exponential functions known as Baker–Campbell–Hausdorff formula, which
is important in the theory of Lie groups and Lie algebras.

2. The integral formula

LetH be a complex Hilbert space. We recall some basic facts concerning semi-groups. For
details and proofs we refer to [3] and usually omit references at later points. A family of
operatorsU(t), t > 0, is called a strongly continuous semi-group of bounded linear operators,
hereafter simply called the semi-group, if the following conditions are satisfied:

(a) for everyt > 0,U(t) : H→ H is a bounded linear operator,
(b) for everyϕ ∈ H the functiont 7→ U(t) ϕ, t > 0, is continuous,
(c) U(0) = I,
(d) for everyt1, t2 > 0,U(t1 + t2) = U(t1) U(t2).
HereI : H→ H is the identity operator. Condition (b) is the strong continuity and condition (d)
is the semi-group property. The norm of allU(t) can be estimated by

‖U(t)‖ 6 Meωt t > 0 (3)

with constantsM > 1 andω > 0.
The generatorA of a semi-group is defined by

D(A) :=
{
ϕ ∈ H | lim

t→+0

1

t
(U(t)− I) ϕ exists

}
and

A : D(A)→ H Aϕ := lim
t→+0

1

t
(U(t)− I) ϕ.

A semi-group possesses exactly one generator, which is a linear, densely defined, closed
operator. Conversely, a linear operator can generate at most one semi-group. The semi-group
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U(t) leaves invariantD(A), i.e.U(t) ϕ ∈ D(A) for ϕ ∈ D(A). Moreover, forϕ ∈ D(A) the
function t 7→ U(t) ϕ is even differentiable rather than continuous and we have a differential
equation:

d

dt
U(t)ϕ = AU(t) ϕ t > 0 (4)

for all ϕ ∈ D(A). Conversely, the initial value problem

d

dt
ϕ(t) = Aϕ(t) ϕ(0) ∈ D(A) (5)

has exactly one solution, which is given by

ϕ(t) = U(t) ϕ(0). (6)

Let P : H → H be an orthogonal projection having finite-dimensional range ranP . We
are interested in the section determinant det(PU(T )P ), which is meant as the determinant
of the finite-dimensional operatorPU(T )P : ranP → ranP . The source for our entire
investigations is a well known formula that generalizes the logarithmic derivative of a scalar-
valued function to the matrix case.

Lemma 2.1. LetK be a finite-dimensional Hilbert space andS(α) : K → K, α0 6 α 6 α1,
be a family of invertible linear operators depending continuously differentiably onα in the
operator norm. Then the following formula holds:

d

dα
ln detS(α) = tr(S−1(α)S ′(α)). (7)

Here a prime denotes the derivative with respect toα andtr is the trace.

Proof. Let s1(α), . . . , sN(α) denote the column vectors ofS(α) whereN := dimK. Then,

d

dα
detS(α) =

N∑
k=1

det(s1(α), . . . , sk−1(α), s
′
k(α), sk+1(α), . . . , sN(α)).

Now expand thekth summand by thekth column and recall Cramer’s rule to conclude that

d

dα
detS(α) = detS(α) tr(S−1(α)S ′(α)).

This proves the lemma. �
The trace in lemma 2.1 is the reason why we need some simple facts about trace class

operators in the course of this paper. We generally refer to [4] for the necessary prerequisites.
It is easily seen by using standard arguments that tr(S−1(α)S ′(α)) depends continuously

onα, whence we may integrate the above formula. Exponentiating yields

detS(α1) = detS(α0) exp

[∫ α1

α0

tr S−1(α)S ′(α) dα

]
. (8)

In order to apply this formula to det(PU(T )P ) we introduce a new parameterα instead of
differentiating byT which would lead to a nonlinear differential equation, the so-called Riccati
equation (see [2]). Let the generatorA be decomposed into

A = A0 +B. (9)

We assume thatA0 : D(A0) → H generates a semi-groupU0(t) and thatB : H → H is
bounded. Now define the operator pencilA(α) by

A(α) := A0 + αB α ∈ [0, 1]. (10)
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SinceB is boundedA(α) is defined onD(A0). Moreover, sinceA0 generates a semi-group
so doesA(α). We shall denote the semi-group generated byA(α) byU(t, α) throughout this
paper. It is obvious thatU0(t) = U(t, 0) andU(t) = U(t, 1). We have the estimate:

‖U(t, α)‖ 6 Me(ω+αM‖B‖)t t > 0 α ∈ [0, 1] (11)

where the constantsM > 1 andω > 0 are independent ofα.
In order to apply formula (8) to the finite-dimensional operatorPU(T , α)P : ranP →

ranP we need to extend the inverse(PU(T , α)P )−1 to the whole ofH and to compute the
derivative∂U(T , α)/∂α. We start by introducing the so-called pseudo inverse relative toP .

Lemma 2.2. LetS : H→ H be a linear operator andP : H→ H an orthogonal projection
such that the operator(PSP |ranP )

−1 : ranP → ranP exists. We define the operator
S+ : H→ H as follows. First we define

S+ϕ :=
{
(PSP |ranP )

−1ϕ for ϕ ∈ ranP

0 for ϕ ∈ (ranP)⊥

and then extendS+ by linearity to the whole ofH. Then we haveS+ = S+P = PS+ and
S+SP = PSS+ = P . If in additionS andP commute we haveSS+ = S+S = P . We callS+

pseudo inverse ofS relative toP .

Proof. We have

S+ϕ = S+Pϕ + S+(I− P) ϕ = S+Pϕ + 0.

Thus S+ = S+P . SinceS+: ranP → ranP it follows that S+Pϕ ∈ ranP and hence
S+Pϕ = PS+Pϕ. This givesS+ = PS+. Moreover, we have

S+SPϕ = S+PSPϕ + S+(I− P)SPϕ = Pϕ + 0

and by the first part

PSS+ϕ = PSPS+ϕ = Pϕ.
If S andP commute it follows from what has been proved so far that

SS+ = SPS+ = PSS+ = P
and analogouslyS+S = P . This completes the proof. �

We turn to computing the derivative∂U(T , α)/∂α. We recall an integral equation that will
also be useful below. In the following all integrals involving operators are meant as integrals
in the strong sense.

Lemma 2.3. Let S0 : D(S0)→ H be the generator of a semi-groupU0(t) andS1 : H→ H
be bounded. IfU(t) is the semi-group generated byS0 +S1 then for06 t0 6 t1 and allϕ ∈ H
we have

(U(t1)− U0(t1− t0)U(t0)) ϕ =
∫ t1

t0

U0(t1− τ)S1U(τ) ϕ dτ. (12)

Proof. See [3], section 3.1. The functionτ 7→ U0(t1 − τ) U(τ) ϕ is differentiable for
ϕ ∈ D(S0) = D(S0 + S1) and we have

d

dτ
(U0(t1− τ) U(τ) ϕ) = U0(t1− τ) S1U(τ) ϕ.

Integrating fromt0 to t1 yields (12) forϕ ∈ D(S0). SinceU0(t),U(t), andS1 are bounded the
formula is valid for allϕ ∈ H. �
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In later applications formula (12) will be multiplicated by bounded operators. Then we
shall use the fact that multiplication by a bounded operator and integration can be interchanged.
Lemma 2.3 enables us to compute the derivative∂U(t, α)/∂α.

Lemma 2.4. For every fixedt > 0 the semi-groupU(t, α) depends continuously differentiably
onα in the operator norm. For allϕ ∈ H we have(

∂

∂α
U(t, α)

)
ϕ =

∫ t

0
U(t − τ, α) B U(τ, α) ϕ dτ. (13)

Proof. We consider the difference quotient. PutS0 := A0 + αB andS1 := hB andt0 := 0,
t1 := t in lemma 2.3:

U(t, α + h) ϕ = U(t, α) ϕ + h
∫ t

0
U(t − τ, α) B U(τ, α + h) ϕ dτ ϕ ∈ H. (14)

Iterating (14) and rearranging for the difference quotient yield:

1

h
(U(t, α + h) ϕ − U(t, α) ϕ) =

∫ t

0
U(t − τ, α) B U(τ, α) ϕ dτ

+h
∫ t

0
U(t − τ, α) B

∫ τ

0
U(τ − τ ′, α) B U(τ ′, α + h) ϕ dτ ′ dτ. (15)

Then (15) shows by using the estimate in (11) that the difference quotient converges in the
operator norm and that formula (13) is correct. The continuity of∂U(t, α)/∂α with respect to
α follows in a similar way. �

Thus far, we have collected all the necessary prerequisites that enable us to formulate a
preliminary version of the integral formula.

Proposition 2.5. LetT > 0 be fixed and assumedet(PU(T , α)P ) 6= 0 for all α ∈ [0, 1]. Let
U+(T , α) be the pseudo inverse ofU(T , α) relative toP according to lemma 2.2. Then we
have

det(PU(T )P ) = det(PU0(T )P ) exp

[∫ 1

0

∫ T

0
trB U(t, α)U+(T , α)U(T − t, α)dt dα

]
.

(16)

Proof. By lemma 2.4U(T , α) is continuously differentiable in the operator norm with respect
to α. Together with det(PU(T , α)P ) 6= 0 the finite-dimensional operatorPU(T , α)P :
ranP → ranP satisfies the assumptions of lemma 2.1. SinceU(T , 0) = U0(T ) and
U(T , 1) = U(T ) it follows:

det(PU(T )P ) = det(PU0(T )P ) exp

[∫ 1

0
tr

(
U+(T , α)

∂U(T , α)

∂α

)
dα

]
.

Because of the appearance ofU+(T , α) the trace refers only to the finite-dimensional space
ranP . Therefore, we may insert formula (13):

tr

[
U+(T , α)

∂U(T , α)

∂α

]
=
∫ T

0
tr(U+(T , α)U(T − t, α) B U(t, α))dt

=
∫ T

0
tr(B U(t, α)U+(T , α)U(T − t, α))dt.

Here we have used the cyclic commutativity under the trace. This proves the statement.�
In order to describe the expressionU(t, α)U+(T , α)U(T −t, α) independently ofU(t, α)

we introduce the Green operators.
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Definition 2.6. Let T > 0 be fixed and assumedet(PU(T , α)P ) 6= 0. LetU+(T , α) be the
pseudo inverse ofU(T , α) relative toP . The operator defined by (06 t, t ′ 6 T )

G(t, t ′;α) :=
{
U(t, α)U+(T , α)U(T − t ′, α) t 6 t ′

U(t, α)U+(T , α)U(T − t ′, α)− U(t − t ′, α) t > t ′

is called the time-ordered Green operator. The special caseα = 0 is abbreviated to
G0(t, t

′) := G(t, t ′; 0) and called the free time-ordered Green operator.

Of course,G(t, t ′;α) depends onT . We do not indicate this because otherwise we have
too many variables. SometimesG(t, t ′;α) is called the bi-semi-group generated byA (see
[1]), but we prefer the name time-ordered Green operator, which is motivated by physical
applications. The name Green operator will be justified in section 3. We note the properties
of G(t, t ′;α).
Lemma 2.7. LetG(t, t ′;α) be the time-ordered Green operator according to definition 2.6.
Then the functiont 7→ G(t, t ′;α) is strongly continuous for0 6 t 6 T , t 6= t ′, and all
06 t ′ 6 T . For 06 t 6 t ′ 6 T and allα ∈ [0, 1] the operatorsG(t, t ′;α) andB G(t, t ′;α)
are trace class. Moreover, the limit

trB G(t, t + 0;α) := lim
t ′→t
t ′>t

trB G(t, t ′;α)

exists and the functiontrB G(t, t + 0;α) depends continuously ont andα.

Proof. The strong continuity ofG(·, t ′;α) (for t 6= t ′) follows immediately from the strong
continuity ofU(t, α) and the definition ofG(t, t ′;α).

SinceU+(T , α) = PU+(T , α) has a finite-dimensional range and thus is trace class,
G(t, t + 0;α) and B G(t, t + 0;α) are trace class too. The existence and continuity of
trB G(t, t + 0;α) follows for the same reason. �

Now we are prepared to derive an integral equation that connectsG(t, t ′;α) toG0(t, t
′).

Proposition 2.8. The time-ordered Green operator according to definition 2.6 satisfies the
integral equation

G(t, t ′;α) ϕ = G0(t, t
′) ϕ − α

∫ T

0
G0(t, τ ) B G(τ, t

′;α) ϕ dτ (17)

with ϕ ∈ H, 06 t, t ′ 6 T andα ∈ [0, 1].

Proof. Let t 6 t ′. Splitting up the integral in (17) and inserting the definitions ofG0 andG
yields

I := α
∫ T

0
G0(t, τ ) B G(τ, t

′;α) ϕ dτ

= α
∫ T

0
U0(t) U

+
0 (T )U0(T − τ)B U(τ, α)U+(T , α)U(T − t ′, α) ϕ dτ

− α
∫ t

0
U0(t − τ) B U(τ, α)U+(T , α)U(T − t ′, α) ϕ dτ

− α
∫ T

t ′
U0(t) U

+
0 (T )U0(T − τ) B U(τ − t ′, α) ϕ dτ.
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After having substitutedτ ′ = τ − t ′ in the third integral we apply lemma 2.3:

I = U0(t) U
+
0 (T )(U(T , α)− U0(T )) U

+(T , α)U(T − t ′, α) ϕ
−(U(t, α)− U0(t))U

+(T , α)U(T − t ′, α) ϕ
−U0(t) U

+
0 (T )(U(T − t ′, α)− U0(T − t ′)) ϕ.

This can be simplified with the aid of lemma 2.2, which tells usU+
0 (T )U(T , α)U

+(T , α) =
U+

0 (T ) andU+
0 (T )U0(T )U

+(T , α) = U+(T , α). Hence,

I = −U(t, α)U+(T , α)U(T − t ′, α) ϕ +U0(t) U
+
0 (T )U0(T − t ′) ϕ

= −G(t, t ′;α) ϕ +G0(t, t
′) ϕ.

For t > t ′ we start with the decomposition∫ T

0
=
∫ t ′

0
+
∫ t

t ′
+
∫ T

t

.

Then the proof can be completed by analogous calculations. �
The main theorem of this paper now follows by simply summarizing what has been proved

up to now.

Theorem 2.9.Let U(t) be a semi-group with generatorA being decomposed according to
(9). Let the operator pencilA(α) be defined as

A(α) := A0 + αB α ∈ [0, 1]. (18)

ThenA(α)generates a semi-groupU(t, α). LetT > 0be fixed and assumedet(PU(T , α)P ) 6=
0 for all α ∈ [0, 1]. Finally, denote byG0(t, t

′) the free time-ordered Green operator according
to definition 2.6. Then the integral equation

G(t, t ′;α) ϕ = G0(t, t
′) ϕ − α

∫ T

0
G0(t, τ ) B G(τ, t

′;α) ϕ dτ (19)

with ϕ ∈ H, 0 6 t, t ′ 6 T andα ∈ [0, 1] possesses at least one solutionG(t, t ′;α), the
time-ordered Green operator, having the properties:

(a) The functiont 7→ G(t, t ′;α) is strongly continuous for0 6 t 6= t ′ and all 0 6 t ′ and all
α ∈ [0, 1].

(b) For t 6 t ′ the operatorsG(t, t ′;α) andB G(t, t ′;α) are trace class and the function

trB G(t, t + 0;α) := lim
t ′→t
t ′>t

trB G(t, t ′;α) (20)

is well defined and continuously with respect to botht andα.
(c) For the section determinants there holds the integral formula

det(PU(T )P ) = det(PU0(T )P ) exp

[∫ 1

0

∫ T

0
trB G(t, t + 0;α) dt dα

]
. (21)

Proof. Combine propositions 2.5 and 2.8. �
The statement of this theorem has a perturbation-like character in that it relates the

determinant of the unperturbed operatorA0 to the determinant of the perturbed operatorA.
There is, of course, some freedom in choosing the decompositionA = A0 +B. It seems to be
reasonable to assume thatP andA0 commute. Then ranP is an invariant subspace forA0 and
we may consider the determinant associated withA0 to be known. One extreme possibility
is to takeA0 = 0 leading to a very simpleG0. In the other direction we may take the largest
possible commuting operator to beA0, that isA0 := PAP + (I− P)A(I− P); which is best
will depend on the special situation.
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3. Solution theory of the integral equation

The foregoing section suggests that the determinant det(PU(T , α)P ) is intimately related to the
solution theory of the integral equation (19). In the following we shall analyse this relationship
in detail. We shall show that uniqueness of the solution already implies existence of a solution
for the special right-hand side in (19). Hence we only need to consider the homogeneous
integral equation. First of all we show that the homogeneous equation is connected with a
homogeneous boundary value problem. In this section the parameterα is not crucial. We
retain it to stay in concordance with the notation of section 2.

The time-ordered Green operatorG(t, t ′;α) satisfies, at least formally, a differential
equation

∂

∂t
G(t, t ′;α) = −δ(t − t ′)I +A(α)G(t, t ′;α). (22)

Hereδ is the Dirac delta. Furthermore, we have simple boundary conditions.

Lemma 3.1. The time-ordered Green operatorG(t, t ′;α) according to definition 2.6 satisfies
for all α ∈ [0, 1] the boundary conditions

(I− P)G(0, t ′;α) = 0 PG(T , t ′;α) = 0 06 t ′ 6 T . (23)

Proof. We note thatU+(T , α) = PU+(T , α) (see lemma 2.2):

(I− P)G(0, t ′;α) = (I− P)U(0, α)U+(T , α)U(T − t ′, α)
= (I− P)U+(T , α)U(T − t ′, α)
= 0.

For t = T we usePU(T , α)U+(T , α) = P (see lemma 2.2):

PG(T , t ′;α) = PU(T , α)U+(T , α)U(T − t ′, α)− PU(T − t ′, α)
= PU(T − t ′, α)− PU(T − t ′, α)
= 0.

This proves the lemma. �
Equation (22) and lemma 3.1 justify the name Green operator and motivate the following

theorem.

Theorem 3.2.Let the functionϕ( · ) : t 7→ ϕ(t) ∈ H be continuously differentiable and solve
the integral equation

ϕ(t) = −α
∫ T

0
G0(t, τ ) Bϕ(τ)dτ 06 t 6 T . (24)

Thenϕ( · ) is also a solution to the boundary value problem:
d

dt
ϕ(t) = A(α) ϕ(t) (I− P) ϕ(0) = 0 Pϕ(T ) = 0. (25)

Proof. We split up the integral in (24):

I (t) :=
∫ T

0
G0(t, τ ) Bϕ(τ)dτ

=
∫ t

0
(U0(t) U

+
0 (T )U0(T − τ)− U0(t − τ)) Bϕ(τ)dτ

+
∫ T

t

U0(t) U
+
0 (T )U0(T − τ) Bϕ(τ)dτ.
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We have assumed thatϕ( · ) is continuously differentiable. Then it is known from semi-group
theory that the respective integrands are also continuously differentiable since all operators
involved are bounded. Moreover,I ( · ) is continuously differentiable andϕ( · ) solves the
differential equation (25). The boundary conditions are clear from lemma 3.1. �

The assumption that the solution to the integral equation is continuously differentiable
generally does not follow from the integral equation when the generatorA0 is unbounded (see
[3], section 4.2.) and therefore cannot be dropped. Theorem 3.2 has a converse.

Theorem 3.3.Let the functionϕ( · ) : t 7→ ϕ(t) ∈ H be continuously differentiable and let
ϕ(0) ∈ D(A). Then ifϕ( · ) solves the boundary value problem (25)ϕ( · ) is also a solution to
the integral equation (24).

Proof. Let ϕ( · ) be a solution to (25). A look at (5) and (6) shows thatϕ(t) can be written as

ϕ(t) = U(t, α) ϕ(0)
sinceϕ(0) ∈ D(A). We evaluate the integral

I (t) := α
∫ T

0
G0(t, τ ) B U(τ, α) ϕ(0) dτ

with the aid of lemma 2.3 (see the proof of proposition 2.8 for related calculations). We split
up the integral and insert the definition ofG0(t, t

′):

I (t) = α
∫ T

0
U0(t) U

+
0 (T )U0(T − τ) B U(τ, α) ϕ(0) dτ − α

∫ t

0
U0(t − τ) B U(τ, α) ϕ(0) dτ

= U0(t) U
+
0 (T )(U(T )− U0(T )) ϕ(0)− (U(t)− U0(t)) ϕ(0).

Now use the boundary conditions and recall the properties of the pseudo inverse from lemma 2.2
to conclude

I (t) = −U(t) ϕ(0) = −ϕ(t).
This proves the lemma. �

The solvability of the boundary value problem can be characterized by det(PU(T , α)P ).

Theorem 3.4.The boundary value problem (25) only has the trivial solution if and only if
det(PU(T , α)P ) 6= 0.

Proof. According to (5) and (6) the solution to the boundary value problem can be written as:

ϕ(t) = U(t, α) ϕ(0).
From the boundary conditions it follows thatϕ(0) = Pϕ(0) and

0= Pϕ(T ) = PU(T , α) ϕ(0) = PU(T , α)Pϕ(0).
Considering this equation on ranP shows that det(PU(T , α)P ) 6= 0 is equivalent toϕ(0) = 0.
This proves the theorem. �

From the preceding considerations we obtain a criterion for the non-vanishing of the
determinant det(PU(T , α)P ).

Corollary 3.5. Let the homogeneous equation (24) only have the trivial solution. Then,

(a) det(PU(T , α)P ) 6= 0.
(b) The inhomogeneous integral equation (19) has exactly one solution.
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Proof.

(a) If det(PU(T , α)P ) = 0 the boundary value problem (25) has a non-trivial solution, which
is also a non-trivial solution to the integral equation (24). This contradicts the assumption.

(b) Since the homogeneous equation (24) only has the trivial solution the inhomogeneous
equation (19) can have at most one solution. Since det(PU(T , α)P ) 6= 0 by (a), in
definition 2.6 the operatorU+(T , α) exists. Thus by theorem 2.9G(t, t ′;α) provides a
solution to equation (19). �
The above solvability criterion reminds us of the Riesz theory for compact operators in

that uniqueness of the solution implies existence of a solution. However, we have to note that
the existence criterion only refers to the special right-hand side in (19).

4. A solvability criterion

In the preceding section we showed that the integral equation (24) and the boundary value
problem (25) are equivalent. However, we have not yet given a practical criterion which
ensures that either of the above problems only has the trivial solution. This will be done now
for the boundary value problem in the special caseA = −iH with H : H → H being a
bounded, self-adjoint operator. The boundedness ofH is not really essential but it helps to
keep the presentation as simple as possible. The parameterα does not appear for the same
reason. It is known (see [3]) that−iH generates a semi-groupU(t). Actually,U(t) is even a
group, i.e.t is allowed to take negative values. EachU(t) is a unitary operator.

It will turn out to be convenient to writeH as orthogonal sumH = H1 ⊕ H2 with
H1 := ranP andH2 := H⊥1 . Then,H can be represented as a block matrix:

H =
(
H11 H12

H21 H22

)
Hjk : Hk → Hj j, k = 1, 2. (26)

Note, that the self-adjointness ofH impliesHjk = H ∗kj , j, k = 1, 2. If we hadH12 = 0 and
H21 = 0 then ranP would be an invariant subspace forH and the boundary value problem
(25) would easily be seen to have only the trivial solution. In general this will not be the case.
However, instead of being furnished with an invariant subspace it suffices that the operators
H11 andH22 are separated from each other in some sense.

Theorem 4.1.LetH : H→ H be a bounded, self-adjoint operator. Assume

H11 6 γ I < 0I 6 H22 (27)

γ, 0 ∈ R, in the sense of quadratic forms. Then the boundary value problem (25) with
A = −iH possesses only the trivial solutionϕ(t) = 0.

Proof. Let ϕ(t) be a solution to the boundary value problem (25). We writeϕ = (ϕ1, ϕ2)
T

according toH = H1⊕H2. The boundary conditions read

ϕ2(0) = 0 ϕ1(T ) = 0. (28)

Let j ∈ N0. By noting the self-adjointness ofH we see
d

dt
(ϕ(t),H jϕ(t)) = 2 Re(ϕ(t),Hjϕ′(t)) = −2 Re i(ϕ(t),Hj+1ϕ(t)) = 0.

Thus,(ϕ(T ),Hjϕ(T )) = (ϕ(0),Hjϕ(0)). Putj = 0, 1 and use the boundary conditions (28)
to obtain

‖ϕ1(0)‖2 = ‖ϕ2(T )‖2 (29)

(ϕ1(0),H11ϕ1(0)) = (ϕ2(T ),H22ϕ2(T )). (30)
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In the last equality we can estimate via (27):

γ ‖ϕ1(0)‖2 > 0‖ϕ2(T )‖2.
Because of (29) andγ < 0 this is only possible with‖ϕ1(0)‖ = 0 what impliesϕ(t) = 0 by
(6). �

It is easy to see that (27) in the above theorem can be replaced byH11 > γ I > 0I > H22

without further ado.
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